

1^{er} Taller Anual Sobre Manejo del Melanoma

Melanoma: racional para las combinaciones de terapia dirigida e inmunoterapia. Nuevos ensayos en curso Dr Luis de la Cruz. Hospital Universitario Virgen de la Macarena. Sevilla. España

Idelacruzmerino@gmail.com

1^{er} Taller Anual Sobre Manejo del Melanoma

1^{er} Taller Anual Sobre Manejo del Melanoma

Surgery 1846	Chemotherapy 1946	Immuno-Oncology Ipilimumab 2011 ^a Nivolumab 2014 ^a Pembrolizumab 2014 ^a Nivolumab + Ipilimumab 2015 ^a
Radiation Therapy 1901	Immunotherapy Interferon-α 1995 ^a Interleukin-2 1998 ^a	Targeted Therapy Vemurafenib 2011 ^a Trametinib 2013 ^a Dabrafenib 2013 ^a Dabrafenib + trametinib 2014 ^a Vemurafenib + Cobimetinib 2015 Encorafenib + Binimetinib 2018

^aDate of first approval in the United States or European Union. IPI, ipilimumab; NIVO, nivolumab.

1. DeVita VT Jr, et al. *Cancer Res.* 2008;68:8643-8653. 2. American Cancer Society. The history of cancer. http://www.cancer.org/cancer/cancerbasics/thehistoryofcancer/. 3. Finn OJ. *Ann Oncol.* 2012;23(suppl 8):viii6-viii9. 4. Mansh M. Yale J Biol Med. 2011;84:381-389. 5. Kirkwood JM, et al. *CA Cancer J Clin.* 2012;62:309-335. 6. NCI Cancer Drug Information. Vemurafenib. http://www.cancer.gov/cancertopics/druginfo/vemurafenib. 7. NCI Cancer Drug Information. Dabrafenib. http://www.cancer.gov/cancertopics/druginfo/vametinib. 9. FDA Press Release. December 22, 2014 http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm427807.htm accessed 9 March, 2015. 10. FDA. Approved drugs: pembrolizumab. September 4, 2014. http://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm412861.htm; 11. ASCO press release 10 Jan, 2014. 12. BMS Press Release 1 October, 2015.

1^{er} Taller Anual Sobre Manejo del Melanoma

CD30 4

HVEM

Estrategias para inducir inmunogenicidad

Type I

GM-CSF

IFN

00

000

 \circ 0 α-GalCer or

α-C-GalCer

00

00

Smyth Nature Rev November 2015

1^{er} Taller Anual Sobre Manejo del Melanoma

Immunological effects of BRAF+MEK inhibition

Paolo A. Ascierto 10^a and Reinhard Dummer^b

^aUnit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori – IRCCS Fondazione "G. Pascale", Napoli, Italy; ^bDepartment of Dermatology, University Hospital Zürich Skin Cancer Center, Zürich, Switzerland

Ascierto Oncolmmunology 2018

1^{er} Taller Anual Sobre Manejo del Melanoma

Immunomodulatory effects of BRAF and MEK inhibitors: Implications for Melanoma therapy

Marvin Kuske^{a,d,e,1}, Dana Westphal^{a,b,d,1}, Rebekka Wehner^{c,d}, Marc Schmitz^{c,d}, Stefan Beissert^{a,d,e}, Christian Praetorius^{a,b,2}, Friedegund Meier^{a,d,e,2,*}

Immunological effects of BRAFi and MEKi.

effects			BRAFi BRAF-mutant	MEKi BRAF wild-type	BRAFi + MEKi BRAF-mutant
microenvironment	in vitro	immune stimulatory molecules and cytokines	\uparrow restoration of IL-12 and TNF α production of DCs [30];		† [22]
		immunosuppressive cytokines	1.a. CD40, CD70, CD83 [22] ↓ IL-1A, IL-8 [22]; ↓ IL-6, IL-10 [30]		↓ [22]; ↓ GRO, IL-8 [36]
	in vivo	immunosuppressive cytokines Tregs and MDSCs	↓ [37] ↓ [26,40,41]	↓ MDSC by ↓ differentiation MDSCs and ↓ osteopontin [42]	↓ [37]
		immune stimulatory molecules and cytokines and regulatory chemokine	↑ CD40 L, ↑ IFNγ [26]; ↓ CCL2 [39]	(-)	
		maturation of APCs	\uparrow [26], restoration of (IL-12 and TNFa) and surface marker expression (CD80, CD83, and CD86) in DCs [29]		
tumor infiltration of immune	in vitro	VEGF expression	↓ [30,36]	↓ VEGF [36]	↓ [36]
cells	in vivo	tumor T cell infiltrate	† [37,44,45,46,49]	↑ tumor-infiltrating CD8 ⁺ T cells as a result of protection from death caused by chronic TCR stimulation [24]	† [37]
		VEGF expression NK cells	↓ [44] ↑ [39]		
better recognition of melanoma cells	in vitro	melanoma antigen expression expression of HLA I and/or HLA II	↑ [21,37] ↑ [22,32]	↑ [21,22] ↑ [22,48]	† [22]
	in vivo	melanoma antigen expression	↑ [37]		† [37]
improved activity of immune	in vitro	reactivity of T lymphocytes	† (measured by IFNγ release) [21,26]		
effector cells	in vivo	T cell cytotoxicity	† (perforin, granzyme B) [37]		↑ (perforin, granzyme B) [37]

Kuske Pharm Res 2018

1^{er} Taller Anual Sobre Manejo del Melanoma

Immunomodulatory effects of BRAF and MEK inhibitors: Implications for Melanoma therapy

Marvin Kuske^{a,d,e,1}, Dana Westphal^{a,b,d,1}, Rebekka Wehner^{c,d}, Marc Schmitz^{c,d}, Stefan Beissert^{a,d,e}, Christian Praetorius^{a,b,2}, Friedegund Meier^{a,d,e,2,*}

effect on		BRAFi + /- MEKi + Checkpoint-I BRAF-mutant	MEKi + Checkpoint-I BRAF wild-type
tumor regression (Superior to single agents)		yes [19,50]	yes [22]
microenvironment	immunosuppressive cytokines		↓ [22]
tumor infiltration of T cells	tumor T cell infiltrate	† [19,49]	† [22]
better recognition of melanoma cells	melanoma antigen expression HLA class II	↑ [19]	† [22]
improved activity of effector T cells	T cell cytotoxicity reactivity of T lymphocytes	\uparrow [19] \uparrow production of granzyme B, IFNγ and TNFα [49]	

Synergistic effects of combining MAPK inhibitors with immune checkpoint inhibitors (preclinical data).

1^{er} Taller Anual Sobre Manejo del Melanoma

Clinical Trials Combining BRAFi + MEKi + Anti–PD-1/L1

BRAFi, BRAF inhibitor; CR, complete response; D/C, discontinued; MEKi, MEK inhibitor; PD, progressive disease; PR, partial response; SD, stable disease; SLD, sum of lesion diameters. ^a Patients with CR and < 100% change in sum of diameters (SOD) have (a) 100% change in non-nodal target lesions and all nodal target lesions are < 10 mm and (b) CR for nontarget lesions. ^b Patients with PR and 100% change in SOD have (a) 100% change in all target lesions and (b) non-CR/non-PD response for nontarget lesions.

1. Ribas A, et al. J Clin Oncol. 2015; 33(suppl) [abstract 3003]; 2. Ribas A, et al. J Clin Oncol. 2016; 34(suppl) [abstract 3014]; 3. Ribas A, et al. Ann Oncol. 2017; 28(suppl 5) [abstract 12160]; 4. Hwu P, et al. Ann Oncol. 2016; 27(suppl 6) [abstract 1109PD]; 5. Dummer, R, et al. J Clin Oncol. 2018;36(suppl 5S) [abstract 189].

SLIDES ARE THE PROPERTY OF THE AUTHOR. PERMISSION REQUIRED FOR REUSE.

1^{er} Taller Anual Sobre Manejo del Melanoma

The Anti-PD-1 Antibody Spartalizumab (PDR001) in Combination With Dabrafenib and Trametinib in Previously Untreated Patients With Advanced BRAF V600-Mutant Melanoma: First Efficacy, Safety, and Biomarker Findings From the Part 2 Biomarker Cohort of COMBI-i (NCT02967692)

Reinhard Dummer, Dirk Schadendorf, Paul Nathan, Hussein Tawbi, Caroline Robert, Paolo A. Ascierto, Antoni Ribas, Celeste Lebbé, Mario Mandala, Naoya Yamazaki, Erika Richtig, Wilson H. Miller Jr, Eduard Gasal, Mathilde Kaper, Jan C. Brase, Bijoyesh Mookerjee, Georgina V. Long

1^{er} Taller Anual Sobre Manejo del Melanoma

COMBI-i Part 2: Biomarker Cohort

P3: 1804057580

N ~ 20

Unresectable or metastatic melanoma					
BRAF V600 mutation	ວ				\frown
Previously untreated	nin		Spartalizu	mab (PDR001) 400 mg Q4W +	PD ^{RECIST} or
No active brain metastasis	eel	•••••	dat	orafenib 150 mg BID +	
• ECOG PS ≤ 2	Scr		t	rametinib 2 mg QD	toxicity
 A total of ≥ 2 cutaneous or subcutaneous lesions or nodal lesions for tumor sample collection 	•	÷	¥	₽	•
	S	Day 1	2-4 weeks	8-12 weeks	PD
Tumor biopsy (FFPE) for biomarker analysis	s X		×	×	×
Blood/plasma for biomarker analysis	×	×	×	×	×

Primary endpoint: change in PD-L1 levels and CD8⁺ cells upon treatment **Secondary endpoints:** safety, PFS, OS, ORR, DOR, DCR, and PK

BID, twice daily; CD, cluster of differentiation; DCR, disease control rate; DOR, duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; FFPE, formalin-fixed, paraffin-embedded; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PK, pharmacokinetics; QD, once daily; RECIST, Response Evaluation Criteria in Solid Tumors; S, screening.

SLIDES ARE THE PROPERTY OF THE AUTHOR. PERMISSION REQUIRED FOR REUSE.

1^{er} Taller Anual Sobre Manejo del Melanoma

P3: 1804057580

Sample Assays

• Tissue:

- Immunohistochemistry: CD8, PD-L1 (Dako 28-8), LAG-3, TIM-3, CD163, FOXP3
 - PD-L1 assessed using MEL score (membrane staining in tumor and tumor-associated immune cells); MEL score ≥ 2 = PD-L1+

• **PBMC** + plasma:

- Flow cytometry
 - Myeloid-derived suppressor cell (MDSC) panel
- Plasma cytokine profiling
 - 45-marker Meso Scale Discovery (MSD) immunoassay panel

1^{er} Taller Anual Sobre Manejo del Melanoma

RECIST v1.1 Best Response (unconfirmed)

Evaluable for Analysis	N = 25 ^b
Best response, n (%) CR PR SD Unknown PD	1 (4) 19 (76) 4 (16) 1 (4) 0
Overall response rate, % 95% CI	80 59-93

 At data cutoff, 14 patients had ≥ 2 post-baseline assessments (10 patients with confirmed response)

Dashed line at −30% represents cutoff for response per RECIST v1.1. ^a Patient had best change from baseline of 0%. ^b 2 patients without ≥ 1 postbaseline assessment were excluded from this analysis. ^c Includes patients with unconfirmed PR or CR.

SLIDES ARE THE PROPERTY OF THE AUTHOR. PERMISSION REQUIRED FOR REUSE

1^{er} Taller Anual Sobre Manejo del Melanoma

Evidence of Immune Activation After Treatment

- Increase in intratumoral CD8⁺ cells based on exploratory H-score analysis
- All patients showed elevated IFNγ levels in plasma upon treatment

IFNy, interferon-gamma; IHC, immunohistochemistry. SLIDES ARE THE PROPERTY OF THE AUTHOR. PERMISSION REQUIRED FOR REUSE

1^{er} Taller Anual Sobre Manejo del Melanoma

On-Treatment Modulation of Tumorpromoting Myeloid Cells/MDSC

Tumor-promoting Tumor-promoting Myeloid Cells and Tumor MDSC Myeloid Cells Shrinkage % Cor = 0.77umor-promoting Myeloid Cells, 0.4 P < .001 * 30 **Tumor Shrinkage**, -25 0.3 Best Response (unconfirmed) * 0.2 WDSC 20 Partial response -50 Stable disease 10 0.1 Unknown -75 0.0 0 n = 15 -30 -20 -10 0 10 Baseline 4 Weeks 8 Weeks Baseline 4 Weeks 8 Weeks Change in Tumor-promoting Myeloid Cells, %

- A decrease in tumor-promoting myeloid cells and MDSC (Lin⁻CD11b⁺CD33⁺) was observed, indicating that the environment became less suppressive
- Changes in tumor-promoting myeloid cells following treatment were correlated with tumor shrinkage

1^{er} Taller Anual Sobre Manejo del Melanoma

Summary of Adverse Events

	N =	: 27
Category, n (%)	All Grades	Grade ≥ 3
AE	27 (100)	13 (48)
Treatment related	27 (100)	9 (33)
SAE	10 (37)	5 (19)
Treatment related	9 (33)	4 (15)
AE leading to discontinuation		
All 3 study drugs	0	0
Spartalizumab only	2 (7)	2 (7)
Dabrafenib/trametinib only	3 (11)	2 (7)
AE leading to dose adjustment/interruption	24 (89)	12 (44)
Fatal AE ^a	1 (4)	1 (4)
Treatment related	0	0

- 2 patients discontinued spartalizumab only: Grade 3 hepatic enzyme increased (onset, day 34; resolving); grade 3 rash (day 139; resolving)
- **3** patients discontinued dabrafenib and trametinib only: Grade 2 acute kidney injury (day 113; not resolved); grade 3 rhabdomyolysis (day 27; resolving); grade 3 hepatic enzyme increased (day 111; resolved)

1^{er} Taller Anual Sobre Manejo del Melanoma

COMBI-i Part 3: Randomized, Double Blind, Placebo Controlled

Primary endpoint: PFS^{RECIST v1.1}

Secondary endpoints: OS, ORR, DOR, DCR, safety, PRO, PK

1^{er} Taller Anual Sobre Manejo del Melanoma

Phase II-III clinical trials BRAF/MEKi + Anti-PD-1/PDL-1

Overview of Study Design PDR001: Double-blind, Randomized, Placebo-controlled N = 500PDR001 (RP3R identified in part 1) Unresectable or metastatic BRAF dabrafenib 150mg BID + trametinib 2mg QD V600 mutant melanoma (stage PD^{RECST} or R 1:1 IIIC/IV) unacceptable · Previously untreated toxicity* Placebo IV · No active brain mets dabrafenib 150mg BID + trametinib 2mg QD ECOG PS \$ 2 Randomization Stratification ECOG PS (0 vs 1 vs 2) LDH (< 1 x ULN vs ≥ 1 to < 2 x ULN vs ≥ 2 x ULN) Primary endpoints: PFSREGST

- Key study objectives
 - Primary: investigator-assessed PFS
 - Secondary: PFS (IRF-assessed), OS, ORR, DOR, Safety, PK

A Phase III, Open-Label, Multicenter, Two Arm, Randomized Study to Investigate the Efficacy and Safety of Cobimetinib Plus Atezolizumab Versus Pembrolizumab in Patients With Previously Untreated Advanced BRAF V600 Wild-Type Melanoma

1^{er} Taller Anual Sobre Manejo del Melanoma

P3: 1810061949

KEYNOTE-022 Part 3 Study Design (NCT02130466)

^aOwing to the small number of patients enrolled in the ECOG PS 1 and LDH ≤1.1 × ULN strata, these strata were combined.

1^{er} Taller Anual Sobre Manejo del Melanoma

Baseline Characteristics

	Pembro + D + T N = 60	Placebo + D + T N = 60
Age, median (range), y	54 (18-82)	58 (21-83)
Male, n (%)	33 (55)	36 (60)
ECOG PS, n (%) 0 1	48 (80) 12 (20)	48 (80) 12 (20)
LDH, n (%) ≤1.1 × ULN	33 (55)	34 (57)
>1.1 × ULN	27 (45)	26 (43)
BRAF mutation, n (%) V600E V600K	52 (87) 8 (13)	49 (82) 11 (18)
PD-L1 status, ^a n (%) Positive Negative/missing	47 (78) 10 (17)/3 (5)	44 (73) 12 (20)/4 (7)

^aDefined as ≥1% staining in tumor and adjacent immune cells as assessed by IHC (22C3 antibody). Data cutoff: Feb 15, 2018.

1^{er} Taller Anual Sobre Manejo del Melanoma

Baseline Characteristics (cont)

	Pembro + D + T N = 60	Placebo + D + T N = 60
Stage at entry, n (%) IIIB IIIC IV	1 (2) 0 (0) 59 (98)	1 (2) 2 (3) 57 (95)
Metastatic stage, n (%) M1a M1b M1c	2 (3) 8 (13) 49 (82)	10 (17) 9 (15) 38 (63)
No brain metastases, n (%)	59 (98)	59 (98)
No prior radiation, n (%)	51 (85)	54 (90)
Prior therapy, n (%) Adjuvant Neoadjuvant No prior therapy	8 (13) 1 (2) 51 (85)	5 (8) 1 (2) 54 (90)

1^{er} Taller Anual Sobre Manejo del Melanoma

P3: 1810061949

Progression-Free Survival

^aBased on Kaplan-Meier estimate of PFS, per investigator assessment.

^bBased on Cox regression model with treatment as a covariate stratified by ECOG PS (0 vs 1) and LDH (LDH >1.1 × ULN vs =1.1 × ULN); owing to the small number of patients enrolled in the ECOG PS 1 and LDH $\leq 1.1 \times ULN$ strata, these strata were combined.

°One-sided P value based on stratified log-rank test.

Data cutoff: Feb 15, 2018.

1^{er} Taller Anual Sobre Manejo del Melanoma

P3: 1810061949

Progression-Free Survival^a by Subgroups

^aBased on Kaplan-Meier estimate of PFS, by investigator assessment per RECIST v1.1. Data cutoff: Feb 15, 2018.

^aBased on Kaplan-Meier estimate of PFS, per investigator assessment.

^bBased on Cox regression model with treatment as a covariate stratified by ECOG PS (0 vs 1) and LDH (LDH >1.1 × ULN vs =1.1 × ULN); owing to the small number of patients enrolled in the ECOG PS 1 and LDH $\leq 1.1 \times$ ULN strata, these strata were combined. ^cOne-sided *P* value based on stratified log-rank test. Data cutoff: Feb 15, 2018.

1^{er} Taller Anual Sobre Manejo del Melanoma

P3: 1810061949

Best Overall Response (investigator review^a, RECIST v1.1)

	Pembro + D + T, n (%) N = 60	Placebo + D + T, n (%) N = 60	Difference in rate ^b % (95% CI) ^b	<i>P</i> Value ^c
ORR	38 (63.3)	43 (71.7)	–7.9 (–24.2 to 8.9)	0.3549
CR	11 (18.3)	8 (13.3)	5.4 (-8.2 to 18.8)	0.4229
PR	27 (45.0)	35 (58.3)	-13.2 (-30.4 to 4.7)	0.1477
DCR	51 (85.0)	56 (93.3)	-7.9 (-20.1 to 3.5)	0.1624
SD	13 (21.7)	13 (21.7)	0 (–14.9 to 15.0)	—
PD	5 (8.3)	3 (5.0)	3.0 (-7.0 to 13.6)	—
Nonevaluable	2 (3.3)	0	3.4 (-2.7 to 11.7)	
No assessment	2 (3.3)	1 (1.7)	1.5 (-6.0 to 9.6)	—

^aResponses are based on investigator best assessment across time points per RECIST v1.1 with confirmation.

bBased on Miettinen and Nurimen method stratified by ECOG PS (0 vs 1) and LDH (>1.1 × ULN vs ≤1.1 × ULN); owing to the small number of patients enrolled in the ECOG PS 1 and LDH ≤1.1 × ULN strata, these strata were combined.

◦P values are provided for descriptive purposes only, no multiplicity adjustment was made. Data cutoff: Feb 15, 2018.

1^{er} Taller Anual Sobre Manejo del Melanoma

P3: 1810061949

Best Percentage Change From Baseline in Target Lesion Size^a

^aMaximum percentage change in target lesion size based on investigator assessment in patients with post-baseline values. Data cutoff: Feb 15, 2018.

1^{er} Taller Anual Sobre Manejo del Melanoma

Kaplan-Meier Analysis of Duration of Response^a DOR^b ≥18 mo Median (range).^b

^aConfirmed response based on investigator assessment per RECIST v1.1.

^bFrom Kaplan-Meier method for censored data.

+ indicates there was no progressive disease at last disease assessment. Data cutoff: Feb 15, 2018.

1^{er} Taller Anual Sobre Manejo del Melanoma

P3: 1810061949

Oncologic Therapies After Discontinuing Study Treatment

n (%)	Pembro + D + T N = 60	Placebo + D + T N = 60		n (%)	Pembro + D + T N = 60	Placebo + D + T N = 60
≥1 New systemic therapy	21 (35.0)	34 (56.7)	[Immunotherapy	9 (15.0)	29 (48.3)
BRAF/MEK inhibitor ^a	14 (23.3)	7 (11.7)	ſ	Pembro	7 (11.7)	21 (35.0)
Dabrafenib	8 (13.3)	8 (13.3)	l	Nivolumab	0 (0)	10 (16.7)
Vemurafenib	8 (13.3)	1 (1.7)		Ipilimumab	2 (3.3)	8 (13.3)
Trametinib	7 (11.7)	5 (8.3)		Other		
Cobimetinib	8 (13.3)	1 (1.7)		Exemestane	0 (0)	1 (1 7)
Chemotherapy ^b	1 (1.7)	2 (3.3)			0 (0)	1 (1.7)
				Iamoxiten	0 (0)	1 (1.7)

1^{er} Taller Anual Sobre Manejo del Melanoma

P3: 1810061949

Summary of Adverse Events

	Pembro + D + T n (%) N = 60	Placebo + D + T n (%) N = 60
Any-grade AE	59 (98)	58 (97)
Grade 3-4	40 (67)	27 (45)
Led to death ^a	2 (3)	0 (0)
Led to discontinuation	25 (42)	13 (22)
Led to discontinuation of all 3 study drugs	15 (25)	9 (15)
Treatment-related AE	57 (95)	56 (93)
Grade 3-4	34 (57)	16 (27)
Led to death	1 (2)	0 (0)
Led to discontinuation of ≥1 study drug	24 (40)	12 (20)

^aOne patient died due to treatment-related pneumonitis and one died of unknown cause. Data cutoff: Feb 15, 2018.

Median follow-up: 9.6 months (range, 2.7-23.4 months)

1^{er} Taller Anual Sobre Manejo del Melanoma

P3: 1810061949

Treatment-Related Adverse Events^a (≥15% Patients in Either Arm)

^aFrequency indicated at the base of columns for grade 1/2 treatment-related adverse events, on top of the column for grade 3-5 events. ^bRash and maculopapular rash. Data cutoff: Feb 15, 2018.

1^{er} Taller Anual Sobre Manejo del Melanoma

Phase III Study of Atezo + Cobi + Vem in BRAF V600 Mutant Melanoma (NCT02908672)

A Phase III study evaluating atezo + cobi + vem vs placebo + cobi + vem in patients with BRAF V600 mutant advanced melanoma
is planned

- Key study objectives
 - Primary: investigator-assessed PFS
 - Secondary: PFS (IRF-assessed), OS, ORR, DOR, Safety, PK

1^{er} Taller Anual Sobre Manejo del Melanoma

TRICOTEL study

Atezolizumab, cobimetinib and vemurafenib in metastatic melanoma

Secondary endpoints:

PFS, DOR, CBR, OS, PRO, safety

Primary endpoint:

Intracranial response rate as per IRC

1^{er} Taller Anual Sobre Manejo del Melanoma

Pembrolizumab +/- Epacadostat / Placebo: Keynote 252

1^{er} Taller Anual Sobre Manejo del Melanoma

Anti-LAG3 and Nivolumab

	All Patients* N = 270		
	Any Grade n (%)	Grade 3-4 n (%)	
Any TRAE	137 (51)	27 (10)	
TRAEs in ≥ 5% of patients			
Fatigue	30 (11)	0	
Pruritus	19 (7.0)	0	
Diarrhea	18 (6.7)	3 (1.1)	
Arthralgia	17 (6.3)	0	
Infusion-related reaction	15 (5.6)	0	
Any serious TRAE	18 (6.7)	12 (4.4)	
Serious TRAEs in > 1 patient			
Colitis	4 (1.5)	3 (1.1)	
Pneumonitis	2 (0.7)	2 (0.7)	
Myocarditis*	2 (0.7)	0	
Pyrexia	2 (0.7)	0	
Any TRAE leading to discontinuation ^b	11 (4.1)	8 (3.0)	

	Mel Prior PD-(L)1*		
	All n = 61	LAG-3 2 1% ^b n = 33	
ORR, n (%)* 95% Cl	7 (11.5) ^d 4.7, 22	6 (18) ⁶ 7, 35.5	
BOR, n (%)*			
CR	1 (1.6)	1 (3.0)	
PR	6 (9.8)*	5 (15) ^d	
SD	23 (38)	15 (45)	
PD	25 (41)	8 (24)	
Clinical progression*	6 (9.8)	4 (12)	
DCR (CR + PR + SD), n (%)° 95% Cl	30 (49) 36, 62	21 (64) 45, 80	

Best change in target lesion size by LAG-3 and PD-L1 expression

Pink: PD-L1 ≥ 1% Blue: PD-L1 < 1% Gray: PD-L1 unknown

1^{er} Taller Anual Sobre Manejo del Melanoma

The safety and efficacy of intratumoral injection of the TLR9 agonist tilsotolimod (IMO-2125) in combination with ipilimumab in patients with PD-1 inhibitor refractory metastatic melanoma: An analysis of efficacy in injected and uninjected lesions

Best overall tumor response	Response rate (RECIST v1.1)
Complete response (CR)*	2 (10%)
Partial response (PR)	6 (29%)
Stable disease (SD)	7 (33%)
Progressive disease (PD)	6 (29%)
Overall response rate (CR, uCR, or PR)	8 (38%)
Disease control rate (CR, uCR, PR, or SD)	15 (71%)

Adi Diab ESMO 2018

1^{er} Taller Anual Sobre Manejo del Melanoma

Abstract: 1306TiP

A randomized phase 3 comparison of IMO-2125 with ipilimumab versus ipilimumab alone in subjects with anti-PD-1 refractory melanoma

Illuminate 301 Study Design (N=308)

308 adult subjects with unresectable or metastatic melanoma with confirmed radiologic progression during or after PD-1 inhibitor therapy who • were ≥21days from the most recent anti-PD-1 treatment and underwent no intervening systemic treatment • underwent no prior ipilimumab treatment except adjuvant	-	 1:1 randomization stratification: Anti-PD-1therapyfor ≥12 or <12 wk Stage M1c or other metastasis BRAF mutation status and prior targeted therapy: wild type, mutation positive with targeted therapy, or mutation 		Arm A Ipilimumab 3 mg/kg (4 doses: wk 1, 4, 7, 10) Disease assessments • Baseline • Week 12 • Every 8 wk during first year, then • Every 12 wk Arm B Ipilimumab 3 mg/kg (4 doses: wk 2, 5, 8, 11)	Active follow-up if there is no disease progression or new cancer treatment Sur vival follow-up if there is disease progression or new cancer treatment Active follow-up if there is no disease progression or new cancer treatment Use Resease Explosion Const
treatment except adjuvant • underwent no BRAF+ treatment or else declined it • had no ocular melanoma		mutation positive with targeted therapy, or mutation positive with no prior targeted therapy • No crossover	→	Arm B Ipilimumab 3 mg/kg (4 doses: wk 2, 5, 8, 11) <i>plus</i> Intratumoral tilsotolimod 8 mg (9 doses: wk 1, 2, 3, 5, 8, 11, 16, 20, 24)	"Using Response Evaluation Criteria in Solid Tumors (RECIST), vl.1

1^{er} Taller Anual Sobre Manejo del Melanoma

CONCLUSIONES

- ➢ INHIBIDORES BRAF y MEK EFECTO INMUNOGÉNICO EN MM BRAF +
- ENSAYOS FASE 1 COMBOS TKI + INMUNO FACTIBILIDAD, EFICACIA Y ACTIVACIÓN INMUNITARIA
- ENSAYO FASE 2 KEYNOTE-022 NEGATIVO PARA ENDPOINT PRIMARIO
- ENSAYOS FASE 3 TRICOTEL Y COMBI-I DILUCIDARÁN PAPEL COMBOS PRIMERA LÍNEA DE TRATAMIENTO
- > MÚLTIPLES COMBINACIONES DIFERENTES EN INVESTIGACIÓN